REFERENCES

1. Hwang SW, Tao H, Kim DH, et al. A physically transient form of silicon electronics. Science 2012;337:1640-4.

2. Kang S, Yin L, Bettinger C. The emergence of transient electronic devices. MRS Bull 2020;45:87-95.

3. Kim G, Hong M, Lee Y, Koo J. Biodegradable materials and devices for neuroelectronics. MRS Bulletin 2023;48:518-30.

4. Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater 2014;10:4650-60.

5. Kang SK, Murphy RK, Hwang SW, et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016;530:71-6.

6. Yu KJ, Kuzum D, Hwang SW, et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater 2016;15:782-91.

7. Kim J, Jeon J, Lee JY, et al. Electroceuticals for regeneration of long nerve gap using biodegradable conductive conduits and implantable wireless stimulator. Adv Sci 2023;10:e2302632.

8. Shin J, Yan Y, Bai W, et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat Biomed Eng 2019;3:37-46.

9. Yang SM, Shim JH, Cho HU, et al. Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv Mater 2022;34:e2108203.

10. Lu D, Yan Y, Avila R, et al. Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv Healthc Mater 2020;9:e2000942.

11. Boutry CM, Beker L, Kaizawa Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat Biomed Eng 2019;3:47-57.

12. Son D, Lee J, Lee DJ, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015;9:5937-46.

13. Choi YS, Yin RT, Pfenniger A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat Biotechnol 2021;39:1228-38.

14. Liu Z, Wen B, Cao L, et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv Healthc Mater 2020;9:e1901342.

15. Koo J, MacEwan MR, Kang SK, et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat Med 2018;24:1830-6.

16. Chen P, Xu C, Wu P, et al. Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury repair. ACS Nano 2022;16:16513-28.

17. Guo H, D’Andrea D, Zhao J, et al. Advanced materials in wireless, implantable electrical stimulators that offer rapid rates of bioresorption for peripheral axon regeneration. Adv Funct Mater 2021;31:2102724.

18. Wang H, Tian J, Jiang Y, et al. A 3D biomimetic optoelectronic scaffold repairs cranial defects. Sci Adv 2023;9:eabq7750.

19. Choi Y, Koo J, Rogers JA. Inorganic materials for transient electronics in biomedical applications. MRS Bull 2020;45:103-12.

20. Reeder JT, Xie Z, Yang Q, et al. Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science 2022;377:109-15.

21. Lee G, Ray E, Yoon HJ, et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci Adv 2022;8:eabp9169.

22. Lee J, Cho HR, Cha GD, et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat Commun 2019;10:5205.

23. Koo J, Kim SB, Choi YS, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci Adv 2020;6:eabb1093.

24. Lee CH, Kim H, Harburg DV, et al. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater 2015;7:e227.

25. Zhang Y, Liu F, Zhang Y, et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc Natl Acad Sci U S A 2023;120:e2217734120.

26. Huang Y, Li H, Hu T, et al. Implantable electronic medicine enabled by bioresorbable microneedles for wireless electrotherapy and drug delivery. Nano Lett 2022;22:5944-53.

27. Park W, Nguyen VP, Jeon Y, et al. Biodegradable silicon nanoneedles for ocular drug delivery. Sci Adv 2022;8:eabn1772.

28. Li H, Gao F, Wang P, et al. Biodegradable flexible electronic device with controlled drug release for cancer treatment. ACS Appl Mater Interfaces 2021;13:21067-75.

29. Yin L, Cheng H, Mao S, et al. Dissolvable metals for transient electronics. Adv Funct Mater 2014;24:645-58.

30. Lee YK, Yu KJ, Song E, et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 2017;11:12562-72.

31. Choi YS, Koo J, Lee YJ, et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv Funct Mater 2020;30:2000941.

32. Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable materials for sustainable health monitoring devices. ACS Appl Bio Mater 2021;4:163-94.

33. Li R, Cheng H, Su Y, et al. An analytical model of reactive diffusion for transient electronics. Adv Funct Mater 2013;23:3106-14.

34. Han WB, Ko GJ, Yang SM, et al. Micropatterned elastomeric composites for encapsulation of transient electronics. ACS Nano 2023;17:14822-30.

35. Won SM, Koo J, Crawford KE, et al. Natural wax for transient electronics. Adv Funct Mater 2018;28:1801819.

36. Khan I, Nagarjuna R, Dutta JR, Ganesan R. Enzyme-embedded degradation of poly(ε-caprolactone) using lipase-derived from probiotic lactobacillus plantarum. ACS Omega 2019;4:2844-52.

37. DelRe C, Chang B, Jayapurna I, et al. Synergistic enzyme mixtures to realize near-complete depolymerization in biodegradable polymer/additive blends. Adv Mater 2021;33:e2105707.

38. DelRe C, Jiang Y, Kang P, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 2021;592:558-63.

39. Kalita NK, Hakkarainen M. Triggering degradation of cellulose acetate by embedded enzymes: accelerated enzymatic degradation and biodegradation under simulated composting conditions. Biomacromolecules 2023;24:3290-303.

40. Shim JS, Rogers JA, Kang SK. Physically transient electronic materials and devices. Mater Sci Eng R Rep 2021;145:100624.

41. Hwang SW, Park G, Edwards C, et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 2014;8:5843-51.

42. Yin L, Farimani AB, Min K, et al. Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv Mater 2015;27:1857-64.

43. Rimstidt JD, Barnes HL. The kinetics of silica-water reactions. Geochim Cosmochim Acta 1980;44:1683-99.

44. Wang L, Gao Y, Dai F, et al. Geometrical and chemical-dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics. ACS Appl Mater Interfaces 2019;11:18013-23.

45. Maximchik PV, Tamarov K, Sheval EV, et al. Biodegradable porous silicon nanocontainers as an effective drug carrier for regulation of the tumor cell death pathways. ACS Biomater Sci Eng 2019;5:6063-71.

46. Liu S, Wang X, Liu S, et al. Laser-triggered degradation of silicon circuits by lithiation and moisture uptake for on-demand transient electronics. Adv Eng Mater 2023;25:2300213.

47. Wang H, Tian J, Lu B, et al. Degradation study of thin-film silicon structures in a cell culture medium. Sensors 2022;22:802.

48. Hwang SW, Park G, Cheng H, et al. 25th anniversary article: materials for high-performance biodegradable semiconductor devices. Adv Mater 2014;26:1992-2000.

49. Kang SK, Park G, Kim K, et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl Mater Interfaces 2015;7:9297-305.

50. Zhou W, Dai X, Fu TM, Xie C, Liu J, Lieber CM. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett 2014;14:1614-9.

51. Steinbach A, Sandner T, Nilsen M, et al. The electronic properties of silicon nanowires during their dissolution under simulated physiological conditions. Appl Sci 2019;9:804.

52. Seidel H, Csepregi L, Heuberger A, Baumgärtel H. Anisotropic etching of crystalline silicon in alkaline solutions: II . Influence of dopants. J Electrochem Soc 1990;137:3626-32.

53. Borenstein JT, Gerrish ND, Currie MT, Fitzgerald EA. A new ultra-hard etch-stop layer for high precision micromachining. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291); 1999 Jan 21; Orlando, FL, USA. IEEE; 1999. pp. 205-10.

54. Zhang A, Lee JH, Lieber CM. Nanowire-enabled bioelectronics. Nano Today 2021;38:101135.

55. Hulst HC, van de Hulst HC. Light scattering by small particles. Courier Corporation;1981. Available from: https://books.google.com/books/about/Light_Scattering_by_Small_Particles.html?id=PlHfPMVAFRcC. [Last accessed on 18 Apr 2024].

56. Patolsky F, Timko BP, Yu G, et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006;313:1100-4.

57. Tian B, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 2012;11:986-94.

58. Kang RH, Lee SH, Kang S, Kang J, Hur JK, Kim D. Systematic degradation rate analysis of surface-functionalized porous silicon nanoparticles. Materials 2019;12:580.

59. Volovlikova O, Gavrilov S, Lazarenko P. Influence of illumination on porous silicon formed by photo-assisted etching of p-type Si with a different doping level. Micromachines 2020;11:199.

60. Gongalsky MB, Pervushin NV, Maksutova DE, et al. Optical monitoring of the biodegradation of porous and solid silicon nanoparticles. Nanomaterials 2021;11:2167.

61. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009;8:331-6.

62. Chen Y, Wang H, Zhang Y, et al. Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices. Nanotechnology 2019;30:394002.

63. Pandey SS, Banerjee N, Xie Y, Mastrangelo CH. Self-destructing secured microchips by on-chip triggered energetic and corrosive attacks for transient electronics. Adv Mater Technol 2018;3:1800044.

64. Li G, Song E, Huang G, et al. High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes. Adv Funct Mater 2018;28:1801448.

65. de Ven J, Nabben HJP. Photo-assisted etching of p-type semiconductors. J Electrochem Soc 1991;138:3401-6.

66. Ryu H, Seo MH, Rogers JA. Bioresorbable metals for biomedical applications: from mechanical components to electronic devices. Adv Healthc Mater 2021;10:e2002236.

67. Kang S, Hwang S, Yu S, et al. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv Funct Mater 2015;25:1789-97.

68. Gu JW, Bae JY, Li G, et al. Corrosion characteristics of single-phase Mg-3Zn alloy thin film for biodegradable electronics. J Magnes Alloys 2023;11:3241-54.

69. Schauer A, Redlich C, Scheibler J, et al. Biocompatibility and degradation behavior of molybdenum in an in vivo rat model. Materials 2021;14:7776.

70. Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 2020;5:61-81.

71. Irimia-Vladu M, Troshin PA, Reisinger M, et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 2010;20:4069-76.

72. Lei T, Guan M, Liu J, et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc Natl Acad Sci U S A 2017;114:5107-12.

73. Liu K, Tran H, Feig VR, Bao Z. Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bull 2020;45:96-102.

74. Hwang S, Kim D, Tao H, et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv Funct Mater 2013;23:4087-93.

75. Hwang SW, Song JK, Huang X, et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater 2014;26:3905-11.

76. Nie FL, Zheng YF, Wei SC, Hu C, Yang G. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 2010;5:065015.

77. Frontmatter. In: Revie RW, editor. Uhlig’s corrosion handbook. 3rd ed. Wiley; 2011. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9780470872864.fmatter. [Last accessed on 18 Apr 2024].

78. De Rosa L, Tomachuk CR, Springer J, Mitton DB, Saiello S, Bellucci F. The wet corrosion of molybdenum thin film -. Part I: Behavior at 25 °C. Mater Corros 2004;55:602-9.

79. Youssef K, Koch C, Fedkiw P. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros Sci 2004;46:51-64.

80. Kneer EA, Raghunath C, Mathew V, Raghavan S, Jeon JS. Electrochemical measurements during the chemical mechanical polishing of tungsten thin films. J Electrochem Soc 1997;144:3041-9.

81. Blawert C, Heitmann V, Scharnagl N, et al. Different underlying corrosion mechanism for mg bulk alloys and mg thin films. Plasma Process Polym 2009;6:S690-4.

82. Miyake K, Ohashi K, Takahashi H, Minemura T. Formation of iron film by ion beam deposition. Surf Coat Technol 1994;65:208-13.

83. Han H, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals. Mater Today 2019;23:57-71.

84. Bae JY, Gwak EJ, Hwang GS, et al. Biodegradable metallic glass for stretchable transient electronics. Adv Sci 2021;8:2004029.

85. Thekkepat K, Han H, Choi J, et al. Computational design of Mg alloys with minimal galvanic corrosion. J Magnes Alloys 2022;10:1972-80.

86. Cai S, Lei T, Li N, Feng F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater Sci Eng C 2012;32:2570-7.

87. Schlüter K, Zamponi C, Piorra A, Quandt E. Comparison of the corrosion behaviour of bulk and thin film magnesium alloys. Corros Sci 2010;52:3973-7.

88. Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in bioresorbable materials and electronics. Chem Rev 2023;123:11722-73.

89. Turnlund J, Keyes W, Peiffer G, Chiang G. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men during depletion and repletion. Am J Clin Nutr 1995;61:1102-9.

90. Song JW, Ryu H, Bai W, et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci Adv 2023;9:eade4687.

91. Wan L, Lu L, Zhu H, et al. Tough and water-resistant bioelastomers with active-controllable degradation rates. ACS Appl Mater Interfaces 2024;16:6356-66.

92. Choi YS, Hsueh YY, Koo J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat Commun 2020;11:5990.

93. Fang H, Zhao J, Yu KJ, et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc Natl Acad Sci U S A 2016;113:11682-7.

94. Feig VR, Tran H, Bao Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 2018;4:337-48.

95. Fu KK, Wang Z, Dai J, Carter M, Hu L. Transient electronics: materials and devices. Chem Mater 2016;28:3527-39.

96. Han WB, Lee JH, Shin JW, Hwang SW. Advanced materials and systems for biodegradable, transient electronics. Adv Mater 2020;32:e2002211.

97. Huang X. Materials and applications of bioresorbable electronics. J Semicond 2018;39:011003.

98. Kang S, Hwang S, Cheng H, et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater 2014;24:4427-34.

99. Fang W, Chen J, Pedevilla P, Li XZ, Richardson JO, Michaelides A. Origins of fast diffusion of water dimers on surfaces. Nat Commun 2020;11:1689.

100. Lee YK, Yu KJ, Kim Y, et al. Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems. ACS Appl Mater Interfaces 2017;9:42633-8.

101. Yang Q, Lee S, Xue Y, et al. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv Funct Mater 2020;30:1910718.

102. McDonald SM, Yang Q, Hsu YH, et al. Resorbable barrier polymers for flexible bioelectronics. Nat Commun 2023;14:7299.

103. Hodgson A, Haq S. Water adsorption and the wetting of metal surfaces. Surf Sci Rep 2009;64:381-451.

104. Maier S, Salmeron M. How does water wet a surface? Acc Chem Res 2015;48:2783-90.

105. Fang H, Zhao J, Yu KJ, et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc Natl Acad Sci U S A 2016;113:11682-7.

106. Peng X, Dong K, Wu Z, Wang J, Wang ZL. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J Mater Sci 2021;56:16765-89.

107. Tariq A, Arif ZU, Khalid MY, et al. Recent advances in the additive manufacturing of stimuli-responsive soft polymers. Adv Eng Mater 2023;25:2301074.

108. Shi Z, Zheng F, Zhou Z, et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Adv Sci 2019;6:1801617.

109. Wen DL, Sun DH, Huang P, et al. Recent progress in silk fibroin-based flexible electronics. Microsyst Nanoeng 2021;7:35.

110. Cointe C, Laborde A, Nowak LG, et al. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsyst Nanoeng 2022;8:21.

111. Moreno S, Baniasadi M, Mohammed S, et al. Biocompatible collagen films as substrates for flexible implantable electronics. Adv Elect Mater 2015;1:1500154.

112. Moreno S, Keshtkar J, Rodriguez-davila RA, et al. Bioelectronics on mammalian collagen. Adv Elect Mater 2020;6:2000391.

113. Takeya H, Itai S, Kimura H, et al. Schwann cell-encapsulated chitosan-collagen hydrogel nerve conduit promotes peripheral nerve regeneration in rodent sciatic nerve defect models. Sci Rep 2023;13:11932.

114. Wang L, Lou Z, Wang K, et al. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research 2020;2020:8716847.

115. Xiang H, Li Z, Liu H, Chen T, Zhou H, Huang W. Green flexible electronics based on starch. npj Flex Electron 2022;6:15.

116. Lee S, Lee W, Bae J, et al. Ecofriendly transfer printing for biodegradable electronics using adhesion controllable self-assembled monolayers. Adv Funct Mater 2024;34:2310612.

117. Wei Z, Xue Z, Guo Q. Recent progress on bioresorbable passive electronic devices and systems. Micromachines 2021;12:600.

118. Lu D, Yan Y, Deng Y, et al. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv Funct Mater 2020;30:2003754.

119. Kim K, Yoo J, Shim J, et al. Biodegradable molybdenum/polybutylene adipate terephthalate conductive paste for flexible and stretchable transient electronics. Adv Mater Technol 2022;7:2001297.

120. Vieira AC, Guedes RM, Tita V. Considerations for the design of polymeric biodegradable products. J Polym Eng 2013;33:293-302.

121. Kim H, Ha MY, Jang J. Effects of surface geometry on the wenzel-to-cassie transition of a water droplet. Bulletin Korean Chem Soc 2017;38:1010-5.

122. Jeong SI, Kim BS, Lee YM, Ihn KJ, Kim SH, Kim YH. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules 2004;5:1303-9.

123. Ganesh M, Dave RN, L’amoreaux W, Gross RA. Embedded enzymatic biomaterial degradation. Macromolecules 2009;42:6836-9.

124. Huang Q, Hiyama M, Kabe T, Kimura S, Iwata T. Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromolecules 2020;21:3301-7.

125. Huang Q, Kimura S, Iwata T. Development of self-degradable aliphatic polyesters by embedding lipases via melt extrusion. Polym Degrad Stab 2021;190:109647.

126. Anderson EM, Larsson KM, Kirk O. One biocatalyst-many applications: the use of candida antarctica b-lipase in organic synthesis. Biocatal Biotransformation 1998;16:181-204.

127. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. Bacterial lipases. FEMS Microbiol Rev 1994;15:29-63.

128. Uppenberg J, Hansen MT, Patkar S, Jones TA. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 1994;2:293-308.

129. Uppenberg J, Ohrner N, Norin M, et al. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 1995;34:16838-51.

130. Patil P, Russo KA, McCune JT, et al. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med 2022;14:eabm6586.

131. Lee DM, Rubab N, Hyun I, et al. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci Adv 2022;8:eabl8423.

132. Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 2017;14:89-96.

133. Liu B, Thayumanavan S. Mechanistic investigation on oxidative degradation of ROS-responsive thioacetal/thioketal moieties and their implications. Cell Rep Phys Sci 2020;1:100271.

134. Imani IM, Kim B, Xiao X, et al. Ultrasound-driven on-demand transient triboelectric nanogenerator for subcutaneous antibacterial activity. Adv Sci 2023;10:e2204801.

135. Yeingst TJ, Arrizabalaga JH, Rawnaque FS, et al. Controlled degradation of polycaprolactone polymers through ultrasound stimulation. ACS Appl Mater Interfaces 2023;15:34607-16.

136. Mahmoodian N, Haddadnia J. A framework of photo acoustic imaging for ovarian cancer detection by galvo-mirror system. J Bioeng Biomed Sci 2016;6:2.

137. Franco A, Bartoli C. The ultrasounds as a mean for the enhancement of heat exchanger performances: an analysis of the available data. J Phys Conf Ser 2019;1224:012035.

138. Gregoritza M, Brandl FP. The Diels-Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur J Pharm Biopharm 2015;97:438-53.

139. Shi Z, Liang W, Luo J, et al. Tuning the kinetics and energetics of diels-alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers. Chem Mater 2010;22:5601-8.

140. Kim DH, Kim YS, Amsden J, et al. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett 2009;95:133701.

141. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004;2:95-108.

142. Kang SK, Koo J, Lee YK, Rogers JA. Advanced materials and devices for bioresorbable electronics. Acc Chem Res 2018;51:988-98.

143. Ouyang H, Li Z, Gu M, et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care. Adv Mater 2021;33:e2102302.

144. Huang Y, Cui Y, Deng H, et al. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat Biomed Eng 2023;7:486-98.

145. Corsi M, Paghi A, Mariani S, et al. Bioresorbable nanostructured chemical sensor for monitoring of pH level in vivo. Adv Sci 2022;9:e2202062.

146. Haddad SH, Arabi YM. Critical care management of severe traumatic brain injury in adults. Scand J Trauma Resusc Emerg Med 2012;20:12.

147. Choi YS, Jeong H, Yin RT, et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 2022;376:1006-12.

148. Liu Y, Dzidotor G, Le TT, et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med 2022;14:eabi7282.

149. Yao G, Kang L, Li C, et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc Natl Acad Sci U S A 2021;118:e2100772118.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/